

# Abstracts

## A Generalized Recursive Algorithm for Wave-Scattering Solutions in Two Dimensions

---

*W.C. Chew, L. Gurel, Y.-M. Wang, G. Otto, R.L. Wagner and Q.H. Liu. "A Generalized Recursive Algorithm for Wave-Scattering Solutions in Two Dimensions." 1992 Transactions on Microwave Theory and Techniques 40.4 (Apr. 1992 [T-MTT]): 716-723.*

A generalized recursive algorithm valid for both the  $E_z$  and  $H_z$  wave scattering of densely packed scatterers in two dimensions is derived. This is unlike previously derived recursive algorithms which have been found to be valid only for  $E_{\text{sub } z}$  polarized waves. In this generalized recursive algorithm, a scatterer is first divided into  $N$  subscatterers. The  $n$ -subscatterer solution is then used to solve the  $(n + n')$ -sub-scatterer solution. The computational complexity of such an algorithm is found to be of  $O(N^2)$  in two dimensions, and meanwhile, providing a solution valid for all angles of incidence. This is better than the method of moments with Gaussian elimination which has an  $O(N^{\text{sub } 3})$  complexity.

[Return to main document.](#)